Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2035535.v1

ABSTRACT

Mass vaccination schemes have been launched for COVID-19 worldwide. However, recent studies have revealed that SARS-CoV-2 Omicron and its sub-lineages efficiently evade humoral immunity from vaccination or previous infection. Therefore, it is of great importance to investigate the contribution of cellular immunity against infection of emerging variants of SARS-CoV-2 in the context of vaccine-induced immunity. By using C57BL/6J and K18-hACE2 mouse models, we demonstrated that BNT162b2 induces robust protective immunity in B-cell deficient (μMT) mice. We further demonstrated that this protection is attributed to the cellular immunity mediated by robust IFN-γ production. In addition, we revealed that SARS-CoV-2 Omicron BA.1 could also induce strong cellular responses in vaccinated μMT mice upon viral challenge, which highlights the significance of cellular immunity against the ever-emerging SARS-CoV-2 variants that evade antibody-mediated immunity. Overall, our study provides evidence that BNT162b2 can induce significant protective immunity in mice that are unable to produce antibodies.


Subject(s)
COVID-19 , Lymphoma, B-Cell
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.477009

ABSTRACT

It has been reported that multiple SARS-CoV-2 variants of concerns (VOCs) including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) can reduce neutralisation by antibodies, resulting in vaccine breakthrough infections. Virus-antiserum neutralisation assays are typically performed to monitor potential vaccine breakthrough strains. However, such experimental-based methods are slow and cannot instantly validate whether newly emerging variants can break through current vaccines or therapeutic antibodies. To address this, we sought to establish a computational model to predict the antigenicity of SARS-CoV-2 variants by sequence alone and in real time. In this study, we firstly identified the relationship between the antigenic difference transformed from the amino acid sequence and the antigenic distance from the neutralisation titres. Based on this correlation, we obtained a computational model for the receptor binding domain (RBD) of the spike protein to predict the fold decrease in virus-antiserum neutralisation titres with high accuracy (~0.79). Our predicted results were comparable with experimental neutralisation titres of variants, including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), B.1.429 (Epsilon), P.1 (Gamma), B.1.526 (Iota), B.1.617.1 (Kappa), and C.37 (Lambda), as well as SARS-CoV. Here, we firstly predicted the fold of decrease of B.1.1.529 (Omicron) as 17.4-fold less susceptible to neutralisation. We visualised all 1521 SARS-CoV-2 lineages to indicate variants including B.1.621 (Mu), B.1.630, B.1.633, B.1.649, and C.1.2, which can induce vaccine breakthrough infections in addition to reported VOCs B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Our study offers a quick approach to predict the antigenicity of SARS-CoV-2 variants as soon as they emerge. Furthermore, this approach can facilitate future vaccine updates to cover all major variants. An online version can be accessed at http://jdlab.online .


Subject(s)
Breakthrough Pain
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.056853

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health, and imposes severe burdens on the entire human society. The severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) can cause severe respiratory illness and death. Currently, there are no specific antiviral drugs that can treat COVID-19. Several vaccines against SARS-CoV-2 are being actively developed by research groups around the world. The surface S (spike) protein and the highly expressed internal N (nucleocapsid) protein of SARS-CoV-2 are widely considered as promising candidates for vaccines. In order to guide the design of an effective vaccine, we need experimental data on these potential epitope candidates. In this study, we mapped the immunodominant (ID) sites of S protein using sera samples collected from recently discharged COVID-19 patients. The SARS-CoV-2 S protein-specific antibody levels in the sera of recovered COVID-19 patients were strongly correlated with the neutralising antibody titres. We used epitope mapping to determine the landscape of ID sites of S protein, which identified nine linearized B cell ID sites. Four out of the nine ID sites were found in the receptor-binding domain (RBD). Further analysis showed that these ID sites are potential high-affinity SARS-CoV-2 antibody binding sites. Peptides containing two out of the nine sites were tested as vaccine candidates against SARS-CoV-2 in a mouse model. We detected epitope-specific antibodies and SARS-CoV-2-neutralising activity in the immunised mice. This study for the first time provides human serological data for the design of vaccines against COVID-19.


Subject(s)
Coronavirus Infections , COVID-19 , Death , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL